## WCT Snapshot Data Format

Wave Computation Tech.
Sept., 2014

## Data Type

- 1. Original data saved by GUI
- 2. Exported freq. data
- 3. Exported transient data

## Original Data Saved by GUI

- Snapshot data file position:
- Project\project\_res\snapshot\project\_snaps.dat(Note: all snapshots share 1 data file)

 The data file use binary format, mix with char, int and floating numbers.

#### Data file basic structure

| Snapshot 1 block |
|------------------|
| Snapshot 2 block |
| Snapshot 3 block |
| Snapshot 4 block |
| Snapshot 5 block |

#### Data structure for a Snapshot Data Block

| Data Type | Length in Byte           | Meaning                                                            |  |
|-----------|--------------------------|--------------------------------------------------------------------|--|
| int       | 4                        | Length of snapshot name.<br>We can define it as N                  |  |
| char      | following <b>N</b> bytes | snapshot name                                                      |  |
| int       | 4                        | How many sampling positions in this snapshot We can define it as M |  |
|           |                          | Data frame for sampling position 1                                 |  |
|           |                          | Data frame for sampling position 2                                 |  |
|           |                          |                                                                    |  |
|           |                          | Data frame for sampling position M                                 |  |

#### Data structure for a Snapshot sampling position

| Data Type | Length in Byte | Meaning                                                                                                                                     |  |
|-----------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|
| double    | 4              | Position x                                                                                                                                  |  |
| double    | 4              | Position y                                                                                                                                  |  |
| double    | 4              | Position z                                                                                                                                  |  |
| int       | 4              | Data length of a component. Unit is bytes. For example, ex frame has length of 10. This value is sizeof(float)*10=40 We can define it as NN |  |
|           | NN             | Ex frame, if ex need to be recorded                                                                                                         |  |
|           | NN             | Ey frame, if ex need to be recorded                                                                                                         |  |
|           | NN             | Ez frame, if ex need to be recorded                                                                                                         |  |
|           | NN             | Hx frame, if ex need to be recorded                                                                                                         |  |
|           | NN             | Hy frame, if ex need to be recorded                                                                                                         |  |
|           | NN             | Hz frame, if ex need to be recorded                                                                                                         |  |

# Example Matlab code to Load a snapshot file assume it record *Ex, Ey & Hz* components only

```
fid = fopen( 'xxxxx', 'r' ); % open data file xxxxx
         % note: matlab code is similar to C++ code, only the flag is different.
% for 1<sup>st</sup> snapshot
nNameLength = fread(fid, 1, 'int32'); % length of name string
strName = fread( fid, nNameLength, 'uchar' ); % name
nPos = fread( fid, 1, 'int32' );
                                             % how many sampling positions
for j = 1:nPos,
                                             % for each sampling position
   pos= fread( fid, 3, 'double' ); % pos(0), (1), (2) is x, y, z
   nLen = fread(fid, 1, 'int32'); % BYTE length of each recording component
   nLen = nLen / 4;
                      % convert it from BYTE length to FLOAT length
   ex_pos(j) = fread( fid, nLen, 'float32'); % ex component for position j
   ey pos(j) = fread(fid, nLen, 'float32'); % ey component for position j
   hz pos(j) = fread(fid, nLen, 'float32'); % hz component for position j
end;
% for 2<sup>nd</sup> snapshot, just repeat above code
```

## Exported Freq. Data

The steps to generate freq. snapshot data file in WCT

- 1. Let's use WCT tutorial case: Tutorial-2012-08\Electromagnetic\Functionalities\Snapshots\Snapshots.wnt (if you use other version tutorial, just try to find: ???\Functionalities\Snapshots\Snapshots\snapshots.wnt)
- 2. This case already has several snapshots as following:



#### 3. Run the simulation to get the *transient* result.



## 4. Define which freq. you want to observe for the snapshots, for example, 1 GHz & 0.5 GHz



Note: in normal state, the freq. snapshot definition is disabled, you need to switch to "showing snapshot" mode to enable it.

For example, show the transient "Facesnapshot1" firstly, then the menu "Add a monitored freq." will

be enabled.





#### 4.1 Define freq. snapshot at 1 GHz.



#### 4.2 Define freq. snapshot at 0.5 GHz.



#### Finally, we get snapshots at 1 GHz & 0.5 GHz



Assuming that we will export the "Facesnapshot1" at 1 GHz and "Facesnapshot21" at 0.5 GHz, separately.

5.1. Double click this node to let "Facesnapshot1" at 1 GHz is shown.



Move mouse to main 3D canvas and click right mouse button to popup menu "Export Displayed Snapshot Data"



#### Let's say the data file is **s1.txt**



After the data file **\$1.txt** has been exported, we can check the data in the file.

| %Version                | 1.0.0    |           | ipshot Freq Data | _H_field | ]          |  |  |  |
|-------------------------|----------|-----------|------------------|----------|------------|--|--|--|
| %FaceSnapshot1:::1e+009 |          |           |                  |          |            |  |  |  |
| %x                      | У        | Z         | [Ex Re]          |          | [Ex Im]    |  |  |  |
|                         | [Ey Re]  |           | [Ey Im]          |          | [Ez Re]    |  |  |  |
|                         | [Ez Im]  |           | [Hx Re]          |          | [Hx Im]    |  |  |  |
|                         | [Hy Re]  |           | [Hy Im]          |          | [Hz Re]    |  |  |  |
|                         | [Hy Im]  |           |                  |          |            |  |  |  |
| -0.9                    | -0.5     | -0.5      | -0.16645         |          | -0.0423294 |  |  |  |
| -0.0632416              |          | -0.160976 |                  | 0.527346 |            |  |  |  |
|                         | 0.595204 |           | 0                | 0        |            |  |  |  |

You can see the content of this file is for FaceSnapshot1 at 1e+009 Hz.

Next, we will export data for "Facesnashop21" at 0.5 GHz.

#### 5.2. Double click this node to let "Facesnapshot21" at 0.5 GHz is shown.



Use menu "Export Displayed Snasphot Data" to export data to s2.txt.



After the data file **S2.txt** has been exported, we can check the data in the file.



You can see the content of this file is for FaceSnapshot21 at 500 MHz.

# Exported Transient Data Type I: Frame by Frame

Rule: one snapshot one file



### Header

#### 128 Bytes Text

Number of components[int32]

32 Bytes Text (name of component 1)

32 Bytes Text (name of component 2)

Δt [float]

Frame length[int32]

Number of capture points in this snapshot[int32]

Array of 3D position (x,y,z) [float]

Note: for surface current, we denote it as H components. So, in this case, Hx is the current in X direction.

### Frame Data

Component index[int32]

Frame index[float]

Value on capture points in this snapshot[float]

Frame index[float]

Value on capture points in this snapshot[float]

## Snapshot Loading Matlab Code 1/3

```
clear all;
% open file
fid = fopen( 'E:\wct src\test cases\Tutorial-2012-08\Electromagnetic\Functionalities\Snapshots\a1.bin', 'rb');
% target file
if( fid == -1 )
  return;
end;
%% read 128 file header info
info = fread( fid, 128, '*char' );
%% number of component
nComp = fread( fid, 1, '*int' );
%% components name
sCompName = cell(nComp,1);
for k = 1: nComp,
  tmp = fread( fid, 32, '*char' );
  sCompName{k, 1} = tmp;
end;
```

## Snapshot Loading Matlab Code 2/3

```
%% dt
dt = fread( fid, 1, '*float32' );
%% frame number
nFrame = fread( fid, 1, '*int' );
%% number of capture points
nRecv = fread(fid, 1, '*int');
%% position of recv.
vRecvPos = fread( fid, [3, double(nRecv)], '*float32' );
vRecvPos = vRecvPos'; %% transpos to make it looks better, but it is not must-be operation.
%% read component by components
data = zeros( double(nComp), double(nRecv + 1), double(nFrame) );
for j = 1 : nComp,
  idxComp = fread( fid, 1, '*int' );
  data(i, :, :) = fread(fid, [double(nRecv + 1), double(nFrame)], '*float32'); % +1 is for frame index
end;
```

## Snapshot Loading Matlab Code 3/3

```
%%
fclose(fid);
%%% verify data
% the first value of each frame is frame index
displd = 3; % component id
% recvld = 1; % frame index
recvld = 2; % 1st recv.
dispData = squeeze( data(dispId, recvId, :) );
figure;
plot( dispData );
```